Statistics Center


"Membantu Anda Memahami Statistika dengan lebih Mudah"

Logo Statistics Center

Logo Statistics Center

STATISTICS CENTER

Statistics Center (SCe) merupakan suatu lembaga yang bergerak di bidang jasa Analisis Data dan Pelatihan Software Statistika (SPSS, MINITAB, E-Views, SAS, dll). SCe secara resmi didirikan pada maret 2009. Berawal dari adanya Program Mahasiswa Wirausaha (PMW) yang diadakan oleh Universitas Brawijaya, Sce akhirnya lulus seleksi bisnis plan tingkat Fakultas hingga Universitas (Total bisnis plan yang masuk 200 lebih disaring menjadi 65 bisnis plan).

Berdasarkan hasil survey yang telah dilakukan pada beberapa mahasiswa, 75% responden menyatakan bahwa statistika itu sulit dan cukup mahalnya biaya untuk melakukan analisis data pada beberapa lembaga analisis di kota malang membuat enggan mahasiswa untuk menggunakan layanan ini . Untuk itu, rencana dalam program ini kami ingin mendirikan lembaga di bidang jasa konsultasi statistika yang bernama
Statistics Center (SCe). Lembaga ini diharapkan mampu membantu menyelesaikan masalah-masalah yang ada khususnya dalam hal penelitian baik dari akademisi, instansi pemerintah maupun swasta.

Bayes' Theorem:

Bayes' Theorem:

Bayes theorem is a formula for revising a priori probabilities after receiving new information. The revised probabilities are called posterior probabilities. For example, consider the probability that you will develop a specific cancer in the next year. An estimate of this probability based on general population data would be a prior estimate; a revised (posterior) estimate would be based on both on the population data and the results of a specific test for cancer.

The formula for Bayes Theorem is as follows:

The best way to understand the terms is to look at an example. Consider a screening test for intestinal tumors. Let Ai = A1 = the event "tumor present", "B" the event "screening test positive" and "A2" the event "tumor not present" with no further A's.

If you have a tumor, the screening test has an 85% chance of catching it -- P(B|A1) = .85. However, it also has a 10% chance of falsely indicating "tumor present" when there is no tumor P(B|A2) = .10. The probability of a person having a tumor is .02 P(A1) = .02.

If the screening test is positive, what is the probability that you have a tumor?

.02*.85/(.02*.85+.98*.10)

= .017/(.017+ .098)

= .148

0 komentar:

Posting Komentar